Exploratory Factor Analysis
Exploratory Factor Analysis
Example usage
Arguments
data | the data as a data frame |
vars | a vector of strings naming the variables of interest in data |
nFactorMethod | 'parallel' (default), 'eigen' or 'fixed', the way to determine the number of factors |
nFactors | an integer (default: 1), the number of factors in the model |
minEigen | a number (default: 1), the minimal eigenvalue for a factor to be included in the model |
extraction | 'minres' (default), 'ml', or 'pa' use respectively 'minimum residual', 'maximum likelihood', or 'prinicipal axis' as the factor extraction method |
rotation | 'none', 'varimax', 'quartimax', 'promax', 'oblimin' (default), or 'simplimax', the rotation to use in estimation |
hideLoadings | a number (default: 0.3), hide factor loadings below this value |
sortLoadings | TRUE or FALSE (default), sort the factor loadings by size |
screePlot | TRUE or FALSE (default), show scree plot |
eigen | TRUE or FALSE (default), show eigenvalue table |
factorCor | TRUE or FALSE (default), show factor correlations |
factorSummary | TRUE or FALSE (default), show factor summary |
modelFit | TRUE or FALSE (default), show model fit measures and test |
kmo | TRUE or FALSE (default), show Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (MSA) results |
bartlett | TRUE or FALSE (default), show Bartlett's test of sphericity results |
Returns
A results object containing:
results$text |