jmv

Proportion Test (N Outcomes)

The χ² Goodness of fit test (not to be confused with the χ² test of independence), tests the Null hypothesis that the proportions of observations match some expected proportions. If the p-value is low, this suggests that the Null hypothesis is false, and that the true proportions are different to those tested.

Example usage

data('HairEyeColor')
dat <- as.data.frame(HairEyeColor)

propTestN(formula = Freq ~ Eye, data = dat, ratio = c(1,1,1,1))

#
#  PROPORTION TEST (N OUTCOMES)
#
#  Proportions
#  ────────────────────────────────
#    Level    Count    Proportion
#  ────────────────────────────────
#    Brown      220         0.372
#    Blue       215         0.363
#    Hazel       93         0.157
#    Green       64         0.108
#  ────────────────────────────────
#
#
#  χ² Goodness of Fit
#  ───────────────────────
#    χ²     df    p
#  ───────────────────────
#    133     3    < .001
#  ───────────────────────
#

Arguments

data the data as a data frame
var the variable of interest in data (not necessary when using a formula, see the examples)
counts the counts in data
expected TRUE or FALSE (default), whether expected counts should be displayed
ratio a vector of numbers: the expected proportions

Returns

A results object containing:

results$props a table
results$tests a table

Tables can be converted to data frames with asDF or as.data.frame(). For example:

results$props$asDF

as.data.frame(results$props)