Multivariate Analysis of (Co)Variance (MANCOVA) is used to explore the relationship between multiple dependent variables, and one or more categorical and/or continuous explanatory variables.
Example usage
Arguments
data
the data as a data frame
deps
a string naming the dependent variable from data, variable must be numeric
factors
a vector of strings naming the factors from data
covs
a vector of strings naming the covariates from data
multivar
one or more of 'pillai', 'wilks', 'hotel', or 'roy'; use Pillai's Trace, Wilks' Lambda, Hotelling's Trace, and Roy's Largest Root multivariate statistics, respectively
boxM
TRUE or FALSE (default), provide Box's M test
shapiro
TRUE or FALSE (default), provide Shapiro-Wilk test
qqPlot
TRUE or FALSE (default), provide a Q-Q plot of multivariate normality
Returns
A results object containing:
results$multivar
a table
results$univar
a table
results$assump$boxM
a table
results$assump$shapiro
a table
results$assump$qqPlot
Tables can be converted to data frames with asDF or as.data.frame(). For example: