Proportion Test (2 Outcomes)
The Binomial test is used to test the Null hypothesis that the proportion of observations match some expected value. If the p-value is low, this suggests that the Null hypothesis is false, and that the true proportion must be some other value.
Example usage
Arguments
data | the data as a data frame |
vars | a vector of strings naming the variables of interest in data |
areCounts | TRUE or FALSE (default), the variables are counts |
testValue | a number (default: 0.5), the value for the null hypothesis |
hypothesis | 'notequal' (default), 'greater' or 'less', the alternative hypothesis |
ci | TRUE or FALSE (default), provide confidence intervals |
ciWidth | a number between 50 and 99.9 (default: 95), the confidence interval width |
bf | TRUE or FALSE (default), provide Bayes factors |
priorA | a number (default: 1), the beta prior 'a' parameter |
priorB | a number (default: 1), the beta prior 'b' parameter |
ciBayes | TRUE or FALSE (default), provide Bayesian credible intervals |
ciBayesWidth | a number between 50 and 99.9 (default: 95), the credible interval width |
postPlots | TRUE or FALSE (default), provide posterior plots |
Returns
A results object containing:
results$table | a table |
results$postPlots | an array of arrays |
Tables can be converted to data frames with asDF or as.data.frame(). For example:
results$table$asDF
as.data.frame(results$table)
Elements in arrays can be accessed with [[n]]. For example:
results$postPlots[[1]] # accesses the first element