Binomial Logistic Regression
Binomial Logistic Regression
Example usage
Arguments
data | the data as a data frame |
dep | a string naming the dependent variable from data, variable must be a factor |
covs | a vector of strings naming the covariates from data |
factors | a vector of strings naming the fixed factors from data |
blocks | a list containing vectors of strings that name the predictors that are added to the model. The elements are added to the model according to their order in the list |
refLevels | a list of lists specifying reference levels of the dependent variable and all the factors |
modelTest | TRUE or FALSE (default), provide the model comparison between the models and the NULL model |
dev | TRUE (default) or FALSE, provide the deviance (or -2LogLikelihood) for the models |
aic | TRUE (default) or FALSE, provide Aikaike's Information Criterion (AIC) for the models |
bic | TRUE or FALSE (default), provide Bayesian Information Criterion (BIC) for the models |
pseudoR2 | one or more of 'r2mf', 'r2cs', or 'r2n'; use McFadden's, Cox & Snell, and Nagelkerke pseudo-R², respectively |
omni | TRUE or FALSE (default), provide the omnibus likelihood ratio tests for the predictors |
ci | TRUE or FALSE (default), provide a confidence interval for the model coefficient estimates |
ciWidth | a number between 50 and 99.9 (default: 95) specifying the confidence interval width |
OR | TRUE or FALSE (default), provide the exponential of the log-odds ratio estimate, or the odds ratio estimate |
ciOR | TRUE or FALSE (default), provide a confidence interval for the model coefficient odds ratio estimates |
ciWidthOR | a number between 50 and 99.9 (default: 95) specifying the confidence interval width |
emMeans | a list of lists specifying the variables for which the estimated marginal means need to be calculate. Supports up to three variables per term. |
ciEmm | TRUE (default) or FALSE, provide a confidence interval for the estimated marginal means |
ciWidthEmm | a number between 50 and 99.9 (default: 95) specifying the confidence interval width for the estimated marginal means |
emmPlots | TRUE (default) or FALSE, provide estimated marginal means plots |
emmTables | TRUE or FALSE (default), provide estimated marginal means tables |
emmWeights | TRUE (default) or FALSE, weigh each cell equally or weigh them according to the cell frequency |
class | TRUE or FALSE (default), provide a predicted classification table (or confusion matrix) |
acc | TRUE or FALSE (default), provide the predicted accuracy of outcomes grouped by the cut-off value |
spec | TRUE or FALSE (default), provide the predicted specificity of outcomes grouped by the cut-off value |
sens | TRUE or FALSE (default), provide the predicted sensitivity of outcomes grouped by the cut-off value |
auc | TRUE or FALSE (default), provide the rea under the ROC curve (AUC) |
rocPlot | TRUE or FALSE (default), provide a ROC curve plot |
cutOff | TRUE or FALSE (default), set a cut-off used for the predictions |
cutOffPlot | TRUE or FALSE (default), provide a cut-off plot |
collin | TRUE or FALSE (default), provide VIF and tolerence collinearity statistics |
boxTidwell | TRUE or FALSE (default), provide Box-Tidwell test for linearity of the logit |
cooks | TRUE or FALSE (default), provide summary statistics for the Cook's distance |
Returns
A results object containing:
results$modelFit | a table |
results$modelComp | a table |
results$models | an array of groups |
Tables can be converted to data frames with asDF or as.data.frame(). For example:
results$modelFit$asDF
as.data.frame(results$modelFit)
Elements in arrays can be accessed with [[n]]. For example:
results$models[[1]] # accesses the first element