Principal Component Analysis
Principal Component Analysis
Example usage
                
data('iris')
pca(iris, vars = vars(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width))
#
#  PRINCIPAL COMPONENT ANALYSIS
#
#  Component Loadings
#  ────────────────────────────────────────
#                    1         Uniqueness
#  ────────────────────────────────────────
#    Sepal.Length     0.890        0.2076
#    Sepal.Width     -0.460        0.7883
#    Petal.Length     0.992        0.0168
#    Petal.Width      0.965        0.0688
#  ────────────────────────────────────────
#    Note. 'varimax' rotation was used
#
Arguments
| data | the data as a data frame | 
| vars | a vector of strings naming the variables of interest in data | 
| nFactorMethod | 'parallel' (default), 'eigen' or 'fixed', the way to determine the number of factors | 
| nFactors | an integer (default: 1), the number of components in the model | 
| minEigen | a number (default: 1), the minimal eigenvalue for a component to be included in the model | 
| rotation | 'none', 'varimax' (default), 'quartimax', 'promax', 'oblimin', or 'simplimax', the rotation to use in estimation | 
| hideLoadings | a number (default: 0.3), hide loadings below this value | 
| sortLoadings | TRUE or FALSE (default), sort the factor loadings by size | 
| screePlot | TRUE or FALSE (default), show scree plot | 
| eigen | TRUE or FALSE (default), show eigenvalue table | 
| factorCor | TRUE or FALSE (default), show factor correlations | 
| factorSummary | TRUE or FALSE (default), show factor summary | 
| kmo | TRUE or FALSE (default), show Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (MSA) results | 
| bartlett | TRUE or FALSE (default), show Bartlett's test of sphericity results | 
Returns
A results object containing:
| results$loadings | a table | 
| results$factorStats$factorSummary | a table | 
| results$factorStats$factorCor | a table | 
| results$modelFit$fit | a table | 
| results$assump$bartlett | a table | 
| results$assump$kmo | a table | 
| results$eigen$initEigen | a table | 
| results$eigen$screePlot | 
Tables can be converted to data frames with asDF or as.data.frame(). For example:
results$loadings$asDF
as.data.frame(results$loadings)